Exploratory Tools for National Children’s Study’s Data

Peter Gilbertson1, Linda Andrews1, Jodi Ciesielski1, Cora MacPherson1, Christina Park1, Anita Johnson1, Jack Moye, Jr.2
1Social & Scientific Systems, Inc., Silver Spring, Maryland, USA; 2National Institutes of Health, Office of the Director; Eunice Kennedy Shriver National Institute of Child Health and Human Development

ABSTRACT
The National Children’s Study, designed to make data and samples freely available for scientific research, with an emphasis on translational research, was initiated in 2009. The study included over 5,000 birth families and followed them through 2014. At protocol-specified times, new or seasoned, could collaborate with support staff. From this charge, the NCS Archive (www.ncsarchive.s-3.net) was conceived to be a nationally available resource for future analytical studies. The Sample Explorer tool provides users with a method of exploring the available samples in the context of the participants that provided them.

CONCLUSIONS
CONCLUSIONS
CONCLUSIONS
CONCLUSIONS
CONCLUSIONS

The Sample Explorer
There are currently 21,069 biological specimens and 4,658 environmental samples available contextualized with NCS participants. The large collection positions the Archive as a strong resource for future analytical studies. The Sample Explorer tool provides users with a method of exploring the available samples in the context of the participants that provided them.

For more information, please contact
National Children’s Study (NCS) Archive website
https://ncsarchive.s-3.net
Archive Email
NCS@s-3.net

The Participant Explorer is a tool designed to allow users to investigate NCS participants and their study participation in a more informed way. Users can choose participant counts by participant type (women, child, father), demographics (race, ethnicity, education level, marital status), and data collection point. Additionally, child participant can be categorized by gestational age, birth weight, and quartile of birth between 2009 and 2014. Users interested in family pedigrees can review the demographic and ancestry characteristics for the 3000+ women, children, and fathers involved in the NCS phase of the NCRs. Researchers focusing on child health can review information on the 2018–2019 NCS at recruitment phases of the NCS (Figure 1).

The Protocol Browser
The Protocol Browser protocol comparisons

CONCLUSIONS
CONCLUSIONS
CONCLUSIONS
CONCLUSIONS
CONCLUSIONS

The National Children’s Study Archive has an information, data, and sample repository for the National Children’s Study, designed to make data and samples freely available for scientific research, with an emphasis on translational research started in 2009. The study, using a nationally representative longitudinal cohort study of 150,000 children from before birth through age 21.

BACKGROUND
The National Children’s Study (NCS) Vanguard Study was planned for the planned Main Study cohort and was started in 2009. The NCS was conceived to be a nationally available resource for future analytical studies. The Sample Explorer tool provides users with a method of exploring the available samples in the context of the participants that provided them. The Sample Explorer allows users to use demographics, participant type, race, and ethnicity, and study visit information to explore the available biological (blood, hair, nails, saliva, urine, nasal secretions, breast milk, cord blood, meconium, and placenta) and environmental (air, dust, water) primary and derivative samples that were collected from a subset of NCS families. The Participant and Sample Explorers will search in determining potential sample sizes and the number of relevant biological and environmental samples that fit the criteria.

CONCLUSIONS
CONCLUSIONS
CONCLUSIONS
CONCLUSIONS
CONCLUSIONS

The Participant and Sample Explorers allow users to use demographics and study visit information to explore the available biological (blood, hair, nails, saliva, urine, nasal secretions, breast milk, cord blood, meconium, and placenta) and environmental (air, dust, water) primary and derivative samples that were collected from a subset of NCS families. Both the Participant and Sample Explorers will search in determining potential sample sizes and the number of relevant biological and environmental samples that fit the criteria.

CONCLUSIONS
CONCLUSIONS
CONCLUSIONS
CONCLUSIONS
CONCLUSIONS

The Participant and Sample Explorers allow users to use demographics and study visit information to explore the available biological (blood, hair, nails, saliva, urine, nasal secretions, breast milk, cord blood, meconium, and placenta) and environmental (air, dust, water) primary and derivative samples that were collected from a subset of NCS families. Both the Participant and Sample Explorers will search in determining potential sample sizes and the number of relevant biological and environmental samples that fit the criteria.

CONCLUSIONS
CONCLUSIONS
CONCLUSIONS
CONCLUSIONS
CONCLUSIONS

The Participant and Sample Explorers allow users to use demographics and study visit information to explore the available biological (blood, hair, nails, saliva, urine, nasal secretions, breast milk, cord blood, meconium, and placenta) and environmental (air, dust, water) primary and derivative samples that were collected from a subset of NCS families. Both the Participant and Sample Explorers will search in determining potential sample sizes and the number of relevant biological and environmental samples that fit the criteria.

CONCLUSIONS
CONCLUSIONS
CONCLUSIONS
CONCLUSIONS
CONCLUSIONS

The Participant and Sample Explorers allow users to use demographics and study visit information to explore the available biological (blood, hair, nails, saliva, urine, nasal secretions, breast milk, cord blood, meconium, and placenta) and environmental (air, dust, water) primary and derivative samples that were collected from a subset of NCS families. Both the Participant and Sample Explorers will search in determining potential sample sizes and the number of relevant biological and environmental samples that fit the criteria.